The application of convolutional neural networks, LF-NMR, and texture for microparticle analysis in assessing the quality of fruit powders: Case study – blackcurrant powders

dc.contributor.authorPrzybył, Krzysztof
dc.contributor.authorSamborska, Katarzyna
dc.contributor.authorJedlińska, Aleksandra
dc.contributor.authorKoszela, Krzysztof
dc.contributor.authorBaranowska, Hanna Maria
dc.contributor.authorMasewicz, Łukasz
dc.contributor.authorKowalczewski, Przemysław Łukasz
dc.date.accessioned2025-08-25T06:56:11Z
dc.date.available2025-08-25T06:56:11Z
dc.date.issued2025
dc.descriptionReviews on Advanced Materials Science August 202564(1):20250132 DOI:10.1515/rams-2025-0132 LicenseCC BY 4.0
dc.description.abstractIt can be observed that dynamic developments in artificial intelligence contributing to the evolution of existing techniques used in food research. Currently, innovative methods are being sought to support unit processes such as food drying, while at the same time monitoring quality and extending their shelf life. The development of innovative technology using convolutional neural networks (CNNs) to assess the quality of fruit powders seems highly desirable. This will translate into obtaining homogeneous batches of powders based on the specific morphological structure of the obtained microparticles. The research aims to apply convolutional networks to assess the quality, consistency, and homogeneity of blackcurrant powders supported by comparative physical methods of low-field nuclear magnetic resonance (LF-NMR) and texture analysis. The results show that maltodextrin, inulin, whey milk proteins, microcrystalline cellulose, and gum arabic are effective carriers when identifying morphological structure using CNNs. The use of CNNs, texture analysis, and the effect of LF-NMR relaxation time together with statistical elaboration shows that maltodextrin as well as milk whey proteins in combination with inulin achieve the most favorable results. The best results were obtained for a sample containing 50% maltodextrin and 50%maltodextrin (MD50-MD70). The CNNmodel for this combination had the lowest mean squared error in the test set at 2.5741 × 10−4, confirming its high performance in the classification of blackcurrant powder microstructures.
dc.identifier.citationReviews on Advanced Materials Science 2025, nr 64, s. 1-16
dc.identifier.doihttps://doi.org/10.1515/rams-2025-0132
dc.identifier.issn1605-8127
dc.identifier.urihttps://hdl.handle.net/11315/31501
dc.language.isoen
dc.publisherDe Gruyter
dc.subjectconvolutional neural networks
dc.subjectlow-field nuclear magnetic resonance
dc.subjecttexture analysis
dc.subjectscanning electron microscopy
dc.subjectfruit powders
dc.subjectblackcurrant
dc.subject.otherZdrowie
dc.subject.otherDietetyka
dc.subject.otherRolnictwo
dc.titleThe application of convolutional neural networks, LF-NMR, and texture for microparticle analysis in assessing the quality of fruit powders: Case study – blackcurrant powders
dc.typeArtykuł
Pliki
Oryginalne pliki
Teraz wyświetlane 1 - 1 z 1
Ładowanie...
Miniatura
Nazwa:
Kowalczewski_2025_The_application_of_convolutional_neural_networks_LF_NMR,_and_texture_for_microparticle_analysis_in_assessing_the_quality_of_fruit_powders_Case_study_blackcurrant_powders.pdf
Rozmiar:
5.65 MB
Format:
Adobe Portable Document Format
Licencja
Teraz wyświetlane 1 - 1 z 1
Brak miniatury
Nazwa:
license.txt
Rozmiar:
2.46 KB
Format:
Item-specific license agreed upon to submission
Opis: